Linear Regression As you can see from the image above, a line of best fit is drawn on a scatter plot. The line of best fit is essentially the Linear Regression model and the blue data points is the training data. What we need to do in order to implement the linear regression model to the data points/training data is to calculate the line of best fit. Linear Regression Model : output = weight * input + b (where "weight" and "input" are vectors) When looking at how the linear regression model works, you need to have an understanding of what the terms "weight" and "bias" mean. You can think of the "weight" vector and "bias" as terms that optimize the line to be a line of best fit on the training data points (like a gradient the y-intercept in ...
Overfitting vs Underfitting Hello! In this post, we will be exploring the concepts of Overfitting and Underfitting. Overfitting: Overfitting is a modelling error that occurs when the model fits the training data too well. As you can see above, the overfitted model is fit almost perfectly to the training data. The overall cost of the model to the training data be near 0, however, the accuracy of this model would be poor when used on testing data. Underfitting: Underfitting is when the model fits to the training data too simply; when the model isn't complex enough to adequately understand the trend/pattern of the training data. As you can see from the image above, the model is just a linear line and does not fit to the training data very well; the model does not accurately understand the trend of the data and is fit too simply.